TEXI JET

The **Texi Jet** textile duct has been designed for high air velocity diffusion (7 < V < 15 m/s). This diffusion is ensured through rows of perforations designed for your project by our air management engineering department.

This method based on high air induction (rate > 20), offers an excellent air distribution efficiency (heating and cooling) combined with the control of residual speed, avoiding any « air draught effect ».

APPLICATIONS

Heating and cooling of large volumes

- large and average size stores, exhibition halls...
- Auditorium, amphitheaters, theaters, concert halls...
- sports halls, multi-purpose halls...

<u>Heating and cooling of high industrial storage warehouses</u> needing a homogeneous and controlled temperature.

<u>Heating and cooling of sensitive industrial production premises</u>, demanding regarding the control of residual speeds or high thermal applications:

- printing halls
- electronics
- metallurgy
- plastic injection...

ADVANTAGES

- High induction rate (> 20). Good control over residual air velocities and excellent comfort even with strong ΔT.
- High efficiency for the heating of high premises (H > 8 m).
- The ideal solution to heat and cool premises whose height is between 4 m < H < 8 m and where comfort and a homogenous repartition of the air are wanted.
- Suitable to heat up to 200 W/m² and up to 300 W/m² when in cooling mode Air flow up to 450 m³/h/ml.
- Texi-jet ducts do not clog.

RECOMMANDATIONS AND LIMITS OF USE

- To be avoided for low height premises (H < 4 m).
- The sizing of the network and of the ducts (quantity, length, perforation plan) must be set at the beginning of the project.

TEXI JET

POSSIBLE FABRICS

All fabrics having a permeability below 100 l/m²/s under 120 Pa as well as technical PVC fabrics can be used.

F2A references	Type of fabric	Weight +/- 5% (g/m²)	Stan- dard colours	Permeability under 120 Pa (I/m²/s)	Characteristics
PM1/E - 60	Polypropylene B-s1-d0 fire rating Resistant to fungi and bacteria in accordance with DIN EN ISO 846 and VDI 6022	60	White	70	Washable (one washing only) in machine according to our instructions
PM1/E - 160	Polyester B-s1-d0 fire rating (available without fire rating)	140	cf **	20	Washable in machine according to our instructions
PVC - M1	Double faced polyester coated with B-s2-d0 fire rating (available without fire rating)	550	cf *	0	Washable with high pressure jet
VPU 550 - M0	Double faced fiber glass fabric coated with polyurethane A2-s1-d0 fire rating	460	Grey White Black	<1	Non washable. Can be dusted off.

White	Black	Green close to RAL 6032
Grey	Blue	Red
close to	close to	close to
RAL 7040	RAL 5005	RAL 3020

^{*:} Standard colours PVC PVC M1 in white only

The indicated colours only apply for the fabric itself.

	White	
Yellow	Blue	Red
close to	close to	close to
RAL 1023	RAL 5005	RAL 3020
Green	Blue	Grey
close to	close to	close to
RAL 6032	RAL 5012	RAL 7040

**: Standard colours PM1 160

TEXI JET

SELECTION CHART FOR A CIRCULAR DUCT

Charts A and B: diameter's selection depending on the input air flow.

Chart A

Chart B

TEXI JET

SELECTION CHART FOR A 1/2 CIRCULAR DUCT

Charts C et D: diameter's selection depending on the input air flow.

Chart C

Chart D

TEXI JET

EXAMPLE OF HIGH INDUCTION TEXI-JET DUCTWORK

Heating and cooling of a large DIY store

Room's dimensions: 40 m x 35 m x 6,5

m

$$\Delta T_{\text{hot}} = + 15^{\circ}\text{C}$$
; $\Delta T_{\text{cold}} = -7^{\circ}\text{C}$

Total airflow: 30 000 m³/h

A collector Ø1600 dispatches the airflow over 3 ducts: 2 ducts Ø800 + 1 duct Ø1250 (see chart C and D)

Airflow per duct:

- duct Ø800 = 6 040 m3/h per duct
- duct Ø1250 = 17 920 m3/h

Length of each duct

- duct Ø800 = 13,7 m each
- duct Ø1250 = 23,7 m
- collector Ø1600 = 24,5 m

4 rows of perforations on each side positioned -50° (towards the bottom) from the horizontal shaft

Air diffusion velocity through the perforations

 $V^{s} = 12.6 \text{ m/s}$

AIRFLOW DISPATCH THROUGH EACH DUCT

1. Surface to treat for each duct : S

$$S_g = Length \times Air throw$$

2. Total surface to treat: S.

$$S_{t}^{*}$$
 =sum of S_{d}

3. «Average surface airflow": Q

$$Q_{a} = Q_{a}/S_{a}$$

4. Airflow per duct : Q

$$Q_0 = Q_s \times S_0$$

AVAILABLE PRESSURE

The total available pressure of the fan P, is given by the following formula:

$$P_{t} = P_{stat} + P_{dyn}$$

With:

- P_{stat} = Pressure drop caused by the air passing through the perforations.
 It depends on the air diffusion velocity (here 9,7 m/s)
- P_{dyn} = Dynamic pressure of the air when it enters the duct (see charts A à D) here P_{dyn} = 42 Pa

