VA e·VA

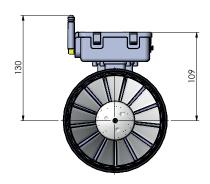
ERDVCeVVV_02/2021_EN. Information and data can not be considered as contractual. Design and data changes may occur without notice during F2A's continuous product development.

VARIABLE AIR VOLUME CIRCULAR DAMPER

e-VAV self-sufficient & connected

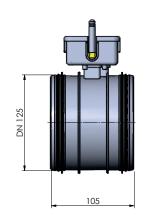
The **e-VAV** damper is a variable air volume damper used to manage fresh air in commercial and school buildings. It controls indoor air quality according to occupancy or CO₂ levels in the premises.

e-VAV generates its own energy to power an engine and requires no wiring. A turbine actuated by the airflow ventilation enables to operate the damper iris to adjust set the airflow.


VERSIONS

- e-VAV, variable air volume damper, energy self-sufficient and connected
- e-QAI, variable air volume damper with air quality sensor (CO₂ or VOC), energy self-sufficient and connected
- e-SENSE, air quality sensor (CO₂ or VOC), energy self-sufficient and connected

CONSTRUCTION


		e-VAV
Casing IRIS system		PC-ABS, M1 certified
External housing	Body	PC-ABS, M1 certified
	Airproofing membrane	Neoprene foam, 1 mm thickness UL94-HF1 certified
Connection		Male connection with EPDM seal

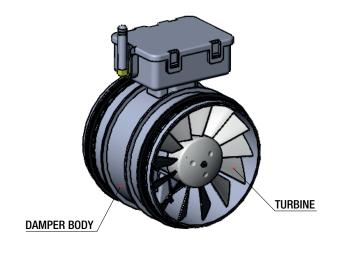
DIMENSIONS

TECHNICAL SPECIFICATIONS

	e-VAV
Casing airtightness	Class C
Upstream/downstream airtightness	Not classified
Operating temperature	+0°C to +45°C
Operating relative humidity	080 % RH (non-condensing)

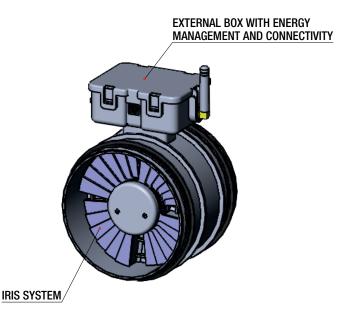
ERDVCeVAV_02/2021_EN Information and data can not be considered as contractual. Design and data changes may occur without notice during F2A's continuous product development

VARIABLE AIR VOLUME CIRCULAR DAMPER


e-VAV self-sufficient & connected

AIRFLOW PERFORMANCES

	Mininum starting	40 m³/h (Minimum airflow required to « restart » the turbine after a complete stop)
Airflow	Mininum operating	20 m³/h
	Recommended maximum	220 m³/h


Damper opening	Airflow	45 m³/h	130 m³/h	220 m³/h
100%	ΔP (Pa)	7	17	45
70%	ΔP (Pa)	10	30	80
	Lw (dB (A))	23	38	52
40%	ΔP (Pa)	22	125	245
	Lw (dB (A))	26	50	63

DESCRIPTION

The external box has 2 plugs:

- One RJ45 to connect a ${\rm CO_2}$ sensor or a presence detector
- One for the quick charge

e-VAV self-sufficient & connected

ERDVGeVAV_02/2021_EN. Information and data can not be considered as contractual. Design and data changes may occur without notice during F2A's continuous product development

VARIABLE AIR VOLUME CIRCULAR DAMPER

TECHNICAL SPECIFICATIONS SENSORS AND COMMUNICATION

Relative Humidity and Temperature sensor	RH operating range	0 to 80% (non-condensing)
	Accuracy	± 3%
	T° operating range	0 to 45 °C
	Accuracy	± 1°C
	Туре	Low power MEMS sensor

	CO ₂ operating range	0 to 2000 ppm
CO ₂ sensor	Accuracy	± 50 ppm
	Туре	NDIR low power

Wireless	Protocol	LoRaWan
communication	Frequency band	868 GHz

OPERATING PRINCIPLE

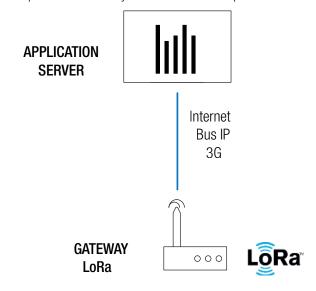
The e-VAV damper natively integrates the LoRaWAN wireless communication protocol:

- Operating settings can be read and modified remotely
- The airflow set points are sent through the wireless network from the BMS or the application server
- The measurements (temperature, humidity, CO₂ or COV level) are sent to the BMS or the application server through the wireless network

The e-VAV damper can also be controlled by a wired sensor (CO₂ sensor with a 0..10V signal or a presence detector with a dry contact) connected to the RJ45 plug of the external box. In this case the operating settings are still available and the measurements sent through the wireless network.

The e-VAV damper can operate in variable or constant airflow mode (one or two steps):

- When the airflow is controlled by the CO₂ level, the damper is set to operate between a minimum and maximum airflow
- When the airflow is controlled by the occupancy level, the damper is set to operate with a constant airflow with two steps (unoccupied mode and nominal airflow)
- The damper is set on a constant airflow when it's required to garantee an airflow in the room.


ERDVCeVV__02/2021_EN. Information and data can not be considered as contractual. Design and data changes may occur without notice during FA's continuous product development.

VARIABLE AIR VOLUME CIRCULAR DAMPER

e-VAV self-sufficient & connected

OPERATING WITH WIRED CONNECTION SENSOR

The e-VAV damper is controlled by a wired sensor or a presence detector connected to the external box by a RJ45 cable.

Self-sufficient and connected e-VAV damper :

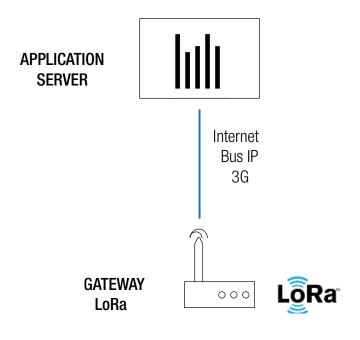
- Installed in the supply air duct
- Connected to the LoRa gateway
- Sending information to the server (uplink) / receiving parameters (downlink)

CO_a sensor:

- Installed in the room
- Wired to the e-VAV damper
- 0..10V control signal

Presence detector:

- Installed in the room
- Wired to the e-VAV damper
- Dry contact signal




VARIABLE AIR VOLUME CIRCULAR DAMPER

e-VAV self-sufficient & connected

OPERATING WITH WIRELESS CONNECTION SENSOR

The e-VAV damper is controlled by a ${\rm CO_2}$ wireless sensor with a LoRaWan communication protocol, installed in the premise.

e-SENSE

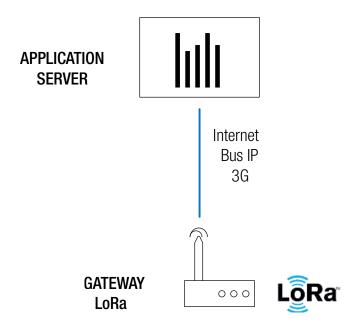
Self-sufficient and connected e-VAV damper :

- Installed in the supply air duct
- Connected to the LoRa gateway
- Sending information to the server (uplink)
- Receiving setpoint and parameters from the server (downlink)

CO, wireless sensor:

- Installed in the room
- Connected to the LoRa gateway
- Sending information to the server (uplink)

ERDVCeVAV_02/2021_EN. Les informations données dans cette fiche technique ne sauraient être considérées comme contractuelles. P2A se réserve le droit de modifier sans préavis les données dans ce document, dans le cadre de l'évolution de ses produits



VARIABLE AIR VOLUME CIRCULAR DAMPER

e-VAV self-sufficient & connected

OPERATING WITH e-SENSE SENSOR

The e-VAV damper is controlled by a e-SENSE sensor installed in the exhaust duct

e·SENSE

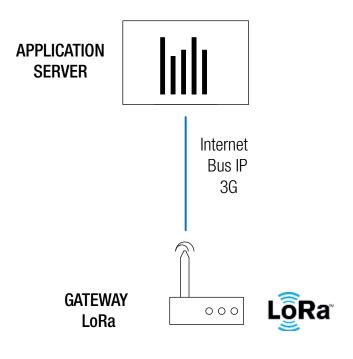
Self-sufficient and connected damper e-VAV in supply :

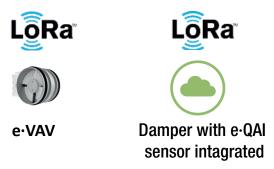
- Installed in the supply air duct
- Connected to the LoRa gateway
- Sending information to the server (uplink)
- Receiving setpoint and parameters from the server (downlink)

CO, sensor e-SENSE self-sufficient and connected :

- Installed in the exhaust air duct
- Connected to the LoRa gateway
- Sending information to the server (uplink)
- Receiving parameters (downlink)

ERDVCeVAV_02/2021_EN. Les informations données dans cette fiche technique ne sauraient être considérées comme contractuelles. P2A se réserve le droit de modifier sans préavis les données dans ce document, dans le cadre de l'évolution de ses produits




VARIABLE AIR VOLUME CIRCULAR DAMPER

e-VAV self-sufficient & connected

OPERATING WITH AN EMBEDDED CO₂ SENSOR IN e-QAI

The e-VAV damper is controlled by a e-QAI damper installed at the exaust side and embedding a CO₂ sensor

Self-sufficient and connected damper e-VAV in supply:

- Installed in the supply air duct
- Connected to the LoRa gateway
- Sending information to the server (uplink)
- Receiving setpoint and parameters from the server (downlink)

Damper with e-QAI sensor integrated :

- Installed in the exhaust air duct
- Connected to the LoRa gateway
- The damper is self-regulated thanks to its integrated sensor
- Sending information to the server (uplink)
- Receiving parameters from the server (downlink)

FRDVGeVAV 02/2021 EN. Les informations données dans cette fiche technique ne sauraient être considérées comme contractuelles. F2A se réserve le droit de modifier sans préavis les données dans ce document, dans le cadre de l'évolution de ses produits

